
Standardizing <select>:
What the future holds for HTML Controls

State of the Browser – October 2021

Hi! I’m Stephanie.
Program Manager for
Microsoft Edge
Developer Experiences

Twitter: @seaotta

Chromium Firefox

Chromium IBM’s Carbon Design System

🕰 A brief overview of the past of HTML Controls
😒 Current problems with native HTML Controls
🎉 How we’re proposing solving these pain points

Some History
HTML Form Controls

1995

1995

1995

CSS
IS
AWESOME

CSS
IS
AWESOME

1997

1999 <HTML>

4.01
CSS
IS
AWESOME

❤

1995

h"ps://www.456bereastreet.com/archive/200409/styling_form_controls/

https://www.456bereastreet.com/archive/200409/styling_form_controls/

.form {
-webkit-appearance: value;
-moz-appearance: value;
appearance: value;

}

1995 – present

The Current State of
Styling Native Controls

<form>*
<fieldset>
<label>
<output>
Text-field (<input>)*
Buttons

Checkboxes*
Radios*
<legend>

<select>*
<option>*
<optgroup>
<datalist>
<progress>
<meter>
Color picker
Date controls
Dropdown widgets
Range
File picker

Feasibility of Styling Form
Controls with CSS
Can be styled with
few problems

Can be styled with
complex CSS and hacks

Good night and
good luck.

* Original Forms introduced in 1995

Browser
Inconsistencies

Browser Inconsistencies

Chrome EdgeHTML

Firefox Safari

No extensibility

<video controls width="1080">
</video>

<video controls width="1080">
</video>

<video width="1080">
</video>

Dribbble: Jordan Ranson

Dribbble: Mark Hendriks Dribbble: Seb kay

What do
developers
really want?

Do they really
want better
form controls?

Initial Research

1400 respondents
Full stack, front-end, back-end,
designers, and other

Top 10 Re-created Form Controls

Full results: https://aka.ms/controls-survey

Reasons Controls Are Created

Full results: https://aka.ms/controls-survey

JSConfEU Survey
Which form control gives you the
most frustration?

Why?

JSConfEU Survey
Which form control gives you the most frustration? Why?

“ Requires
hacky tricks

“
Can’t
style <option>
elements at all
to the extent we
need to

…but the amount of
work it takes to
implement an
accessible alternative
with complete feature
parity is massive.“

How painful is it?

Important Research

🤬

Clearly, there is
an issue

What’s happened and
what’s to come

✨

+

New Styles &
Accessibility
Improvements

Chromium Controls Visual Refresh
Past New!

Dark Mode for HTML
Form Controls

Dark Mode for HTML
Form Controls

@media (prefers-color-scheme: dark) {
// styles here

}

<meta name=”color-scheme" content=”light dark" />

Available in:
• Microsoft Edge on the desktop (v87)
• Chrome for Android (v91)
• Future versions of Microsoft Edge for Android

https://aka.ms/dark-controls

HTML isn’t done

New Native Elements

New proposal:
<popup> element
Microsoft / Google / Salesforce

Transient, top-layer UI
Popover elements which light dismiss, typically only one is
open at a time (with exceptions for child/chained popups)

We propose that all popups
share “light dismiss” behaviors.

https://github.com/MicrosoftEdge/MSEdgeExplainers/blob/main/Popup/explainer.md

Elements that don’t have
light dismiss behavior
• Alerts
• Toasts
• Custom tooltips
• Miscellaneous, persistent popover UI

Basic Example

<button aria-haspopup="true" aria-controls="menuPopup" id="menuButton">Menu</button>
<popup id="menuPopup" role="menu" anchor="menuButton">
<!-- Markup for menuitems goes here -->

</popup>

<script>
document.getElementById('menuButton').addEventListener('click', () => {
document.getElementById('menuPopup').show()

});
</script>

https://aka.ms/popup-explainer

Other controls +
controls-related
work in progress

Other elements in the works

https://aka.ms/tabs-demo

Anchored Positioning

https://aka.ms/anchor-pos

Fixing the current
problems with controls

Customizing
Controls UI

Customizing Controls UI Explainer

MVC
Design
Pattern

View
(user interface)

Model
(data members,

capabilities of control)

Controller
(intermediary between

model and view)

Goals
• Style any arbitrary part of a native control
• Add arbitrary content into a control
• Style a particular part without rewriting the whole UI
• Customize UI without reimplementing the data model and code

for reacting to user input
• Customized controls are accessible by default

3 Customization Options
• Using standardized parts and states to override the native

control styles via pseudo-classes and pseudo-elements.
• Using named <slots> to replace parts of the native control UI

with developer content, while optionally leaving some native
parts in place.
• Replacing the entire UI of the native control with an author-

supplied shadow root.

Solution 1:

Standardized
Control UI anatomy, parts
and behavior

Solution 1:

Standardized
Control UI
anatomy,
parts and
behavior

aka.ms/open-ui

Goals of Open UI
• Document component names as they exist today
• Define a common language for describing UIs and design systems
• Eventual browser standards for web app components
• Converging designer processes and developer workflows

<select>
investigation

The anatomy of a <select>

<style>
.styled-select::part(button) {

background-color: red;
}

</style>

<select class="styled-select">
<option>choice 1</option>
<option>choice 2</option>

</select>

<style>
.styled-select:open::part(button) {

background-color: lightgray;
}

</style>

Solution 2:

Named Slots

Standardized Slots

Standardized Slots

slot=button

slot=listbox

<select>
<div slot=“button” part=“button” class=“custom-button”>Choose a pet</div>
<div slot=“listbox” part=“listbox” class=“custom-listbox”>
<option>

<div class=”option-text”>Cat</div>

</option>
<option>

<div class=”option-text”>Dog</div>

</option>
</div>

</select>

Customize selectively

<input type=”range”>

Customize selectively

<range>
<div slot="thumb" part="thumb">

<svg><!-- Use SVG to draw the thumb icon... --></svg>
</div>

</range>

Parts and slots

Native controller code + user-
provided UI Parts

Web Platform
Code

Part
Attributes /

element types
Native event

handlers ++

Accessibility

Solution 3:

Shadow DOM
replacement

attachShadow()

attachShadow()

let customSelect = document.createElement('select');
customSelect.setAttribute("custom", "");
let selectShadow = customSelect.attachShadow({ mode: 'open' });
selectShadow.innerHTML = `My custom select UI`;
document.body.appendChild(customSelect);

part=“button”

Don’t forget your parts!

https://aka.ms/controls-explainer

We need you!

We need you!
• Contribute to the form control investigations on Open UI
• Tell browser vendors what you need from your form controls
• Provide feedback on the explainers

Follow these folks
• @gregwhitworth – Salesforce / Open UI
• @stubbornella – Google Chrome PM
• @seaotta – Microsoft Edge PM

We’re here to listen…

…because these
improvements are for you.

Thank you!
https://noti.st/seaotta
@seaotta
ststimac@microsoft.com

https://noti.st/seaotta

